THE GROUP $G_1(R\pi)$ FOR π A FINITE ABELIAN GROUP

Mu-Lan LIU

Institute of Mathematics, Academica Sinica, Beijing, China

Communicated by H. Bass Received April 1981

1. Introduction

For a right noetherian ring R, $G_0(R)$ denotes the Grothendieck group $K_0(\mathcal{M}_R)$ of the category \mathcal{M}_R of finitely generated right R-modules.

Let π be a finite abelian group and $R\pi$ its group ring over R. Then H. Lenstra [2] has obtained a beautiful calculation of $G_0(R\pi)$. It is natural to ask whether Lenstra's formula generalizes to the higher K-groups of the category \mathcal{M}_R . Unfortunately this does not seem to be the case. Nevertheless Lenstra's formula does generalize to the group $G_1(R\pi)$ (of [1, p. 453], which does not coincide with Quillen's $K_1(\mathcal{M}_{R\pi})$). We present here this calculation of $G_1(R\pi)$, following Lenstra rather closely.

Let $X(\pi)$ denote the set of cyclic quotient groups of π . If $\rho \in X(\pi)$ has order *n* and a generator *t* we put

$$R(\varrho) = R\varrho/\phi_n(t)R\varrho$$

where ϕ_n denotes the *n*th cyclotomic polynomial; the two-sided ideal $\Phi_n(t)R_{\varrho}$ does not depend on the choice of the generator t (cf. [2]). The main result is an isomorphism of the form

$$G_i(R\pi) \cong \bigoplus_{\varrho \in X(\pi)} G_i(R(\varrho)) / H_{\varrho}, \qquad (1.1)$$

where H_{ϱ} will be described below. This isomorphism is Lenstra's result for i = 0, and we prove it here for i = 1.

Recall that, for any right noetherian ring R, the abelian group $G_0(R)$ is presented by generators [M] for $M \in \mathcal{M}_R$ and relations [M] = [M'] + [M''] for each exact sequence $0 \to M' \to M \to M'' \to 0$ in \mathcal{M}_R .

Similarly $G_1(R)$ is presented by generators $[M, \alpha]$, $M \in \mathcal{M}_R$, $\alpha \in \operatorname{Aut}_R(M)$, and exact sequence relations as above, plus relations $[M, \alpha\beta] = [M, \alpha] + [M, \beta]$ for $\alpha, \beta \in \operatorname{Aut}_R(M)$.

Now let π be a finite abelian group as above. If $\varrho \in X(\pi)$ has order *n* then $\mathscr{M}_{R(\varrho)/nR(\varrho)}$ can be considered to be a subcategory of $\mathscr{M}_{R(\varrho)}$, whence a homomorphism

$$G_i(R(\varrho)/nR(\varrho)) \rightarrow G_i(R(\varrho)) \quad (i=0,1).$$

The image of this homomorphism is the group H_{ϱ} in (1.1) above. Thus $G_0(R(\varrho))/H_{\varrho}$ (resp. $G_1(R(\varrho))/H_{\varrho}$) is presented by adding to the defining relations above the additional relations [M] = 0 (resp. $[M, \alpha] = 0$) whenever $n \cdot M = 0$.

If we put $R\langle \varrho \rangle = R(\varrho)[1/n]$ then there is an exact localization sequence [1, p. 492]

$$G_0(R(\varrho)/nR(\varrho) \to G_0(R(\varrho)) \to G_0(R\langle \varrho \rangle)) \to 0$$

so that, for i = 0, Lenstra's formula takes the simpler form

$$G_0(R\pi)\cong \bigoplus_{\varrho\in X(\pi)} G_0(R\langle \varrho\rangle).$$

But, the strict analogue of this for i = 1 is not correct.

2. The homomorphism $\varphi: \bigoplus_{\rho} G_1(R(\varrho))/H_{\rho} \to G_1(R\pi)$

Write $\pi = \prod_{p} \pi_{p}$ as the direct product of its *p*-primary components π_{p} . For each set *S* of primes put $\pi_{S} = \prod_{p \in S} \pi_{p}$. The canonical homomorphisms $\pi \to \pi_{S} \hookrightarrow \pi$ induce, by restriction, an exact functor $N_{S} : \mathscr{M}_{R\pi} \to \mathscr{M}_{R\pi}$.

For $M \in \mathcal{M}_{R\pi}$, $N_S M$ is the *R*-module *M* on which π_p acts as given for $p \in S$, and trivially for $p \notin S$. In particular $N_S M = M$ if π_p acts trivially on *M* for $p \notin S$. Moreover $N_S \cdot N_T = N_{S \cap T}$. We also write

$$N_S: G_i(R\pi) \to G_i(R\pi) \quad (i=0,1)$$

for the homomorphism induced by the functor N_s .

Let $\varrho \in X(\pi)$, $M \in \mathcal{M}_{R(\varrho)}$, and $\alpha \in \operatorname{Aut}_{R(\varrho)}(M)$. We shall write

$$[M, \alpha; (\varrho)] = \text{class of } (M, \alpha) \text{ in } G_1(R(\varrho)),$$

$$[M, \alpha; \langle \varrho \rangle] = \text{class of } (M, \alpha) \text{ in } G_1(R(\varrho))/H_{\varrho},$$

$$[M, \alpha; \pi] = \text{class of } (M, \alpha) \text{ in } G_1(R\pi),$$

where we embed $\mathcal{M}_{R(\varrho)}$ in $\mathcal{M}_{R\pi}$ via the canonical projection $R\pi \to R(\varrho)$. Let $P(\varrho)$ denote the set of primes dividing the order of ϱ . We define

 $\varphi_{\varrho}':G_1(R(\varrho))\to G_1(R\pi)$

by

$$\varphi_{\varrho}'[M,\alpha;(\varrho)] = \sum_{S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} N_S[M,\alpha;\pi].$$

The next lemma will be used to show that $\varphi'_{\varrho}(H_{\varrho}) = 0$.

Lemma 1. Let $M \in \mathscr{M}_{R(\varrho)/nR(\varrho)}$, where $\varrho \in X(\pi)$ has order n. There is a chain of submodules

$$M = M_0 \supset M_1 \supset \cdots \supset M_t = 0$$

such that, for each i, M_i is stable under every $R(\varrho)$ -endomorphism of M, and, for some $p \in P(\varrho)$, $p(M_i/M_{i+1}) = 0$ and ϱ_p acts trivially on M_i/M_{i+1} .

Except for the $\operatorname{End}_{R(\varrho)}(M)$ -invariance of each M_i , this is Lemma 2.2 of Lenstra [2], and the M_i constructed by Lenstra are clearly $\operatorname{End}_{R(\varrho)}(M)$ invariant.

Corollary. The subgroup H_{ϱ} of $G_i(R(\varrho))$ is generated by elements $[M, \alpha; (\varrho)]$ such that, for some prime $p \in P(\varrho)$, pM = 0 and ϱ_p acts trivially on M.

Now let (M, α) and p be as in the Corollary. Then

$$\varphi_{\varrho}'[M,\alpha;(\varrho)] = \sum_{p \in S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} (N_S[M,\alpha;\pi] - N_{S - \{p\}}[M,\alpha;\pi]) = 0.$$

Thus φ'_{ρ} induces a homomorphism

$$\varphi_{\varrho}: G_{1}(R(\varrho))/H_{\varrho} \to G_{1}(R\pi),$$

$$\varphi_{\varrho}[M, \alpha; \langle \varrho \rangle] = \sum_{S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} N_{S}[M, \alpha; \pi].$$

$$\varphi: \bigoplus_{\varrho \in X(\pi)} G_{1}(R\pi)/H_{\varrho} \to G_{1}(R\pi)$$

Let

be the homomorphism with components $(\varphi_{\varrho})_{\varrho \in X(\pi)}$.

Theorem. φ is an isomorphism.

3. The inverse $\Psi: G_1(R\pi) \to \bigoplus_{\varrho} G_1(R(\varrho))/H_{\varrho}$

Let $\varrho \in X(\pi)$ and let S be a set of primes. The functor $N_S: \mathscr{M}_{R\pi} \to \mathscr{M}_{R\pi}$ carries the subcategory $\mathscr{M}_{R(\varrho)}$ to $\mathscr{M}_{R(\varrho_S)}$, and so defines homomorphism $N_S: G_1(R(\varrho)) \to G_1(R(\varrho_S))$ sending $[\mathcal{M}, \alpha; (\varrho)]$ to $[N_S \mathcal{M}, \alpha; (\varrho_S)]$. Thus we can define

by

$$\begin{aligned} \Psi_{\varrho}: G_{1}(R(\varrho)) \to \bigoplus_{\varrho'} G_{1}(R(\varrho')) / H_{\varrho} \\ \Psi_{\varrho}[M, \alpha; (\varrho)] &= \sum_{S \subset P(\varrho)} [N_{S}M, \alpha; \langle \varrho_{S} \rangle]. \end{aligned}$$
(3.1)

Lemma 2. Suppose $\varrho_1, \varrho_2 \in X(\pi)$, $M \in \mathscr{M}_{R(\varrho_1)} \cap \mathscr{M}_{R(\varrho_2)}$, and $\alpha \in \operatorname{Aut}_{R\pi}(M)$. Then

$$\Psi_{\varrho_1}[M,\alpha;(\varrho_1)]=\Psi_{\varrho_2}[M,\alpha;(\varrho_2)].$$

Lenstra's proof of his analogous Lemma 4.1 applies without any change here.

M. Liu

Lemma 3. Let $M \in \mathcal{M}_{R\pi}$. There is a chain of submodules

$$M = M_0 \supset M_1 \supset \dots \supset M_t = 0 \tag{3.2}$$

such that, for each i, M_i is stable under $\operatorname{End}_{R\pi}(M)$, and $M_i/M_{i+1} \in \mathscr{M}_{R(\varrho)}$ for some $\varrho \in X(\pi)$.

Except for the assertion about $\operatorname{End}_{R(\pi)}(M)$ -invariance, this is just Lemma 2.5 of Lenstra [2]. The M_i constructed by Lenstra are easily seen to be $\operatorname{End}_{R\pi}(M)$ -invariant.

Let $M \in \mathcal{M}_{R\pi}$ and $\alpha \in \operatorname{Aut}_{R\pi}(M)$. With the notation of Lemma 3, let $\alpha_i \in \operatorname{Aut}_{R\pi}(M_i/M_{i+1})$ be the automorphism induced by α , and choose $\varrho_i \in X(\pi)$ so that $M_i/M_{i+1} \in \mathcal{M}_{R(\varrho_i)}$. Put

$$\Psi[M,\alpha;\pi] = \sum_{i=0}^{t-1} \Psi_{\varrho_i}[M_i/M_{i+1},\alpha_i;\langle \varrho_i \rangle].$$
(3.3)

By Lemma 2, this is independent of the choice of the ϱ_i 's. To see that it does not depend on the filtration (2) of M, note first that Ψ is clearly *unaltered* if we replace (3.2) by a refinement. In general any two filtrations of M as in Lemma 3 have refinements which are equivalent in the sense of the Schrier theorem [3, Chapter IV, §4]; Schrier equivalent filtrations of M clearly give the same value for $\Psi[M, \alpha: \pi]$ in (3.1). Finally it is easily seen (as in Lenstra [2, p. 181]) that Ψ respects the defining relations of $G_1(R\pi)$. Thus (3) defines a homomorphism

$$\Psi: G_1(R\pi) \to \bigoplus_{\varrho \in X(\pi)} G_1(R(\varrho)) / H_{\varrho}.$$

To check that $\varphi \circ \Psi[M, \alpha; \pi] = [M, \alpha; \pi]$ it suffices clearly to consider the case when $M \in \mathcal{M}_{R(\varphi)}$ for some $\varphi \in X(\pi)$. Then we have

$$\begin{split} \varphi \circ \Psi[M, \alpha; \pi] &= \varphi \left(\sum_{S \subset P(\varrho)} \left[N_S M, \alpha; \langle \varrho_S \rangle \right] \right) \\ &= \sum_{S \subset P(\varrho)} \sum_{T \subset S} (-1)^{\#(S-T)} [N_T N_S M, \alpha; \pi] \\ &= \sum_{T \subset P(\varrho)} \left[N_T M, \alpha; \pi \right] \left(\sum_{T \subset S \subset P(\varrho)} (-1)^{\#(S-T)} \right) \\ &= \left[N_{P(\varrho)} M, \alpha; \pi \right] = [M, \alpha; \pi]. \end{split}$$

On the other hand

$$\begin{split} \Psi \circ \varphi[M, \alpha; \langle \varrho \rangle] &= \Psi \left(\sum_{S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} [N_S M, \alpha; \pi] \right) \\ &= \sum_{S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} \sum_{T \subset S} [N_T N_S M, \alpha; \langle (\varrho_S)_T \rangle] \\ &= \sum_{T \subset P(\varrho)} [N_T M, \alpha; \langle \varrho_T \rangle] \left(\sum_{T \subset S \subset P(\varrho)} (-1)^{\#(P(\varrho) - S)} \right) \\ &= [N_{P(\varrho)} M, \alpha; \langle \varrho_{P(\varrho)} \rangle] = [M, \alpha; \langle \varrho \rangle]. \end{split}$$

290

This concludes the proof that φ is an isomorphism. One can check, just as in Lenstra [2, Section 5] that φ is functorial with respect to π and R in the same way that Lenstra's isomorphism is for G_0 .

References

- [1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
- [2] H. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra 20 (1981) 173-193.
- [3] S. Lang, Algebra (Addison-Wesley, Reading, MA, 1971).