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1. Introduction

For a right noetherian ring R, Go(R) denotes the Grothendieck group Ky(.#z) of
the category .#y of finitely generated right R-modules.

Let r be a finite abelian group and R its group ring over R. Then H. Lenstra [2]
has obtained a beautiful calculation of Gg(Rm). It is natural to ask whether
Lenstra’s formula generalizes to the higher K-groups of the category .#z. Unfor-
tunately this does not seem to be the case. Nevertheless Lenstra’s formula does
generalize to the group G(Rm) (of [1, p.453], which does not coincide with
Quillen’s K(.#g,)). We present here this calculation of G,(Rn), following Lenstra
rather closely.

Let X(x) denote the set of cyclic quotient groups of #. If o € X () has order » and
a generator { we put

R(@)=Ro/p.(t)Ro

where ¢, denotes the nth cyclotomic polynomial; the two-sided ideal D,(t)R, does
not depend on the choice of the generator ¢ (cf. [2]). The main result is an isomor-
phism of the form

Gi(Rm)= @ Gi(R(0))/H,, (1.1)
Q€ X(n)
where f, will be described below. This isomorphism is Lenstra’s result for i =0, and
we prove it here fori=1.

Recall that, for any right noetherian ring R, the abelian group Gy(R) is presented
by generators [M] for M e.#z and relations [M]=[M']+[M"] for each exact
sequence 0 = M' =M —->M"—0in 4.

Similarly G,(R) is presented by generators [M, ], M€ .4z, aeAutg(M), and
exact sequence relations as above, plus relations (M, 8] =M, a] + [M, 8] for a, S e
Autg (M).
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Now let n be a finite abelian group as above. If g€ X(n) has order n then
-#R(o)/nR(g) €aN be considered to be a subcategory of .#g(,,, whence a homomorphism

Gi(R(@)/nR(@))— Gi(R(e)) (i=0,1).

The image of this homomorphism is the group H, in (1.1) above. Thus Go(R(@))/H,
(resp. G,(R(@))/H,) is presented by adding to the defining relations above the addi-
tional relations [M]=0 (resp. [M, a] =0) whenever n- M =0.

If we put R{g) = R(p)[1/n] then there is an exact localization sequence [1, p. 492]

Go(R(@)/nR(0) = Go(R(0)) > Go(R(2))) > 0

so that, for i =0, Lenstra’s formula takes the simpler form

GoRn)= @ Go(R(o)).

eeX(n)

But, the strict analogue of this for /=1 is not correct.

2. The homomorphism ¢ : @o Gi(R(e))/H,~ G (Rm)

Write 7 =[I, n, as the direct product of its p-primary components x,. For each
set S of primes put n5= [es - The canonical homomorphisms 7 — n5< 7 induce,
by restriction, an exact functor Ng: g, — M ps.

For M € Mp,, NsM is the R-module M on which r, acts as given for pe S, and
trivially for p¢ S. In particular NgM =M if n, acts trivially on M for p¢ S. More-

over Ng: Nyr=Ngnr. We also write
Ng:Gi(Rr)—= G;(Rn) (i=0,1)
for the homomorphism induced by the functor Ns.
Let o€ X(n), M € 4p(p), and a € Autg,(M). We shall write
M, a; (0)] = class of (M, a) in G\(R(0)),
[M, a; (0)] = class of (M, @) in G(R(e))/H,,
M, a; n] = class of (M, ) in G(Rn),

where we embed .#g,, in 4, via the canonical projection Rn— R(0). Let P(o)
denote the set of primes dividing the order of 9. We define

9o:G1(R(@)—~ G (Rm)
by
voM,a;(0)1= Y (-1)*P@Q-INGIM, a; ).

SCP)

The next lemma will be used to show that ¢,(H,)=0.
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Lemma 1. Let M €. 4 gy /nr(), Where o € X(n) has order n. There is a chain of sub-
modules
M=MDOM,D>---DM,=0

such that, for each i, M, is stable under every R(g)-endomorphism of M, and, for
some pe P(g), p(M;/M; .,)=0 and o, acts trivially on M;/M, .

Except for the Endg,)(M)-invariance of each M;, this is Lemma 2.2 of Lenstra
[2], and the M, constructed by Lenstra are clearly Endg,, (M) invariant.

Corollary. The subgroup H, of G;(R(0)) is generated by elements [M, a; ()] such
that, for some prime p € P(0), pM =0 and g, acts trivially on M.

Now let (M, @) and p be as in the Corollary. Then
poM a; (@)= Y (~1)*P@Q-S(NGM, a; t] = Ns_ (M, a;n])=0.

PESCP)
Thus ¢, induces a homomorphism

9:G1(R(0))/Hy— G\(Rm),
0IM, a; ()] = Y (~1)*PO-INGM, a; n].

SCP)

¢o: @ Gy(Rr)/H,~G,(Rn)

Q€ X(m)

|~
o
-

be the homomorphism with components (¢,),¢ x(x)-

Theorem. ¢ is an isomorphism.

3. The inverse ¥:G,(Rn) > @, G\(R())/H,

Let oe X(n) and let S be a set of primes. The functor Ng: #g,— Mg, carries
the subcategory g 10 Ar(p), and so defines homomorphism Ng:G(R(g))
G(R(gs)) sending [M, a; (0)] to [NsM, a; (0s)]. Thus we can define

¥,:Gi(R(9) ~ @D G\(R(2"))/H,
by ¢
olMa; @)= L [NsM,a;(os)]. G.1)
(]

Lemma 2. Suppose 9, 0;€ X(n), MeJ/R(Ql,ﬁ MRy and a € Autg,(M). Then
¥, M, a; (0] = ¥, M, a; (02)]

Lenstra’s proof of his analogous Lemma 4.1 applies without any change here.
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Lemma 3. Let M € .4g,. There is a chain of submodules
M=MQDM|D"'DM,=0 (32)

such that, for each i, M, is stable under Endg,(M), and M;/M; | € .4y, for some
oe X(n).

Except for the assertion about Endg(,)(M)-invariance, this is just Lemma 2.5 of
Lenstra [2]. The M; constructed by Lenstra are easily seen to be Endg.(M)-
invariant.

Let Me.dg, and aeAutg,(M). With the notation of Lemma 3, let a;e
Autg.(M;/M; ) be the automorphism induced by «, and choose ;€ X(r) so that
A’I,/A’IH, 1 Ev”R(g‘.). Put

t-1
YIM, a;n) = Zo ¥, [Mi/ M 41, i3] (3.3

By Lemma 2, this is independent of the choice of the g;’s. To see that it does not
depend on the filtration (2) of M, note first that ¥ is clearly unaltered if we replace
(3.2) by a refinement. In general any two filtrations of M as in Lemma 3 have refine-
ments which are equivalent in the sense of the Schrier theorem [3, Chapter IV, §4];
Schrier equivalent filtrations of M clearly give the same value for ¥[M, a: ] in
(3.1). Finally it is easily seen (as in Lenstra [2, p. 181]) that ¥ respects the defining
relations of G;(Rn). Thus (3) defines a homomorphism

¥:G,(Rn)— ge@m Gi(R())/H,.

To check that ¢ ° WM, a; ] = [M, a; n] it suffices clearly to consider the case when
M € M, for some g € X(r). Then we have

0o WM, a; 7] =¢< ) [NsM,a;<gs>1>

ScPe)

= Y Y (-1)*S-DINrNgM, a; 7}

SCP(@) TCS
= ) [NrM,a;NI< Y (—l)*‘s‘”>
TCP) TCSCP()

= [NppM, a; ] = M, a; n].
On the other hand
o oM, a; (o)) = *P( L (~)*P@-SNM, a; n])

SCP)

= ¥ (-D)*P@-5 ¥ [NsNsM, a;<(2s)n)
TCS

S5C P(o)
= ¥ [NrM,a;<Qr)]( Yy (_1)#(P(g)—5))
TCPe TCSCP)

= [NP(Q)M, a, (QP(g))] = [Mv a; <Q>]’
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This concludes the proof that ¢ is an isomorphism. One can check, just as in
Lenstra [2, Section 5] that ¢ is functorial with respect to 7 and R in the same way
that Lenstra’s isomorphism is for G,.
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