THE GROUP $G_{1}(R \pi)$ FOR π A FINITE ABELIAN GROUP

Mu-Lan LIU
Institute of Mathematics, Academica Sinica, Beijing, China

Communicated by H. Bass
Received April 1981

1. Introduction

For a right noetherian ring $R, G_{0}(R)$ denotes the Grothendieck group $K_{0}\left(\mu_{R}\right)$ of the category $\|_{R}$ of finitely generated right R-modules.

Let π be a finite abelian group and $R \pi$ its group ring over R. Then H. Lenstra [2] has obtained a beautiful calculation of $G_{0}(R \pi)$. It is natural to ask whether Lenstra's formula generalizes to the higher K-groups of the category \mathscr{M}_{R}. Unfortunately this does not seem to be the case. Nevertheless Lenstra's formula does generalize to the group $G_{1}(R \pi)$ (of [1, p. 453], which does not coincide with Quillen's $K_{1}\left(\mathscr{H}_{R \pi}\right)$). We present here this calculation of $G_{1}(R \pi)$, following Lenstra rather closely.

Let $X(\pi)$ denote the set of cyclic quotient groups of π. If $\varrho \in X(\pi)$ has order n and a generator t we put

$$
R(\varrho)=R \varrho / \phi_{n}(t) R \varrho
$$

where ϕ_{n} denotes the nth cyclotomic polynomial; the two-sided ideal $\Phi_{n}(t) R_{Q}$ does not depend on the choice of the generator t (cf. [2]). The main result is an isomorphism of the form

$$
\begin{equation*}
G_{i}(R \pi) \cong \bigoplus_{\varrho \in X(\pi)} G_{i}(R(\varrho)) / H_{Q} \tag{1.1}
\end{equation*}
$$

where H_{Q} will be described below. This isomorphism is Lenstra's result for $i=0$, and we prove it here for $i=1$.

Recall that, for any right noetherian ring R, the abelian group $G_{0}(R)$ is presented by generators $[M]$ for $M \in \mathscr{M}_{R}$ and relations $[M]=\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]$ for each exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ in $\mathscr{\mu}_{R}$.

Similarly $G_{1}(R)$ is presented by generators $[M, \alpha], M \in \mathscr{M}_{R}, \alpha \in \operatorname{Aut}_{R}(M)$, and exact sequence relations as above, plus relations $[M, \alpha \beta]=[M, \alpha]+[M, \beta]$ for $\alpha, \beta \in$ Aut $_{R}(M)$.

Now let π be a finite abelian group as above. If $\varrho \in X(\pi)$ has order n then $\|_{R(\varrho) / n R(\varrho)}$ can be considered to be a subcategory of $\|_{R(\varrho)}$, whence a homomorphism

$$
G_{i}(R(\varrho) / n R(\varrho)) \rightarrow G_{i}(R(\varrho)) \quad(i=0,1) .
$$

The image of this homomorphism is the group H_{ϱ} in (1.1) above. Thus $G_{0}(R(\varrho)) / H_{Q}$ (resp. $G_{1}(R(\varrho)) / H_{Q}$) is presented by adding to the defining relations above the additional relations $[M]=0($ resp. $[M, \alpha]=0)$ whenever $n \cdot M=0$.

If we put $R\langle\varrho\rangle=R(\varrho)[1 / n]$ then there is an exact localization sequence [1, p. 492]

$$
G_{0}\left(R(\varrho) / n R(\varrho) \rightarrow G_{0}(R(\varrho)) \rightarrow G_{0}(R\langle\varrho\rangle)\right) \rightarrow 0
$$

so that, for $i=0$, Lenstra's formula takes the simpler form

$$
G_{0}(R \pi) \cong \bigoplus_{\rho \in X(\pi)} G_{0}(R\langle\varrho\rangle)
$$

But, the strict analogue of this for $i=1$ is not correct.

2. The homomorphism $\varphi: \oplus_{\varrho} G_{1}(R(\varrho)) / H_{\underline{Q}} \rightarrow G_{1}(R \pi)$

Write $\pi=\Pi_{p} \pi_{p}$ as the direct product of its p-primary components π_{p}. For each set S of primes put $\pi_{s}=\prod_{p \in S} \pi_{p}$. The canonical homomorphisms $\pi \rightarrow \pi_{S} \subset \pi$ induce, by restriction, an exact functor $N_{S}: \mathscr{M}_{R \pi} \rightarrow \mathbb{M}_{R \pi}$.

For $M \in \mathscr{M}_{R \pi}, N_{S} M$ is the R-module M on which π_{p} acts as given for $p \in S$, and trivially for $p \notin S$. In particular $N_{S} M=M$ if π_{p} acts trivially on M for $p \notin S$. Moreover $N_{S} \cdot N_{T}=N_{S \cap T}$. We also write

$$
N_{S}: G_{i}(R \pi) \rightarrow G_{i}(R \pi) \quad(i=0,1)
$$

for the homomorphism induced by the functor N_{S}.
Let $\varrho \in X(\pi), M \in \mathscr{M}_{R(\Omega)}$, and $\alpha \in \operatorname{Aut}_{R(\Omega)}(M)$. We shall write

$$
\begin{aligned}
& {[M, \alpha ;(\varrho)]=\text { class of }(M, \alpha) \text { in } G_{1}(R(\varrho))} \\
& {[M, \alpha ;\langle\varrho\rangle]=\text { class of }(M, \alpha) \text { in } G_{1}(R(\varrho)) / H_{\varrho},} \\
& {[M, \alpha ; \pi]=\text { class of }(M, \alpha) \text { in } G_{1}(R \pi)}
\end{aligned}
$$

where we embed $\mathscr{U}_{R(Q)}$ in $\mathscr{M}_{R \pi}$ via the canonical projection $R \pi \rightarrow R(\varrho)$. Let $P(\varrho)$ denote the set of primes dividing the order of ϱ. We define

$$
\varphi_{\varrho}^{\prime}: G_{1}(R(\varrho)) \rightarrow G_{1}(R \pi)
$$

by

$$
\varphi_{\varrho}^{\prime}[M, \alpha ;(\varrho)]=\sum_{S \subset P_{(\varrho)}}(-1)^{\#(P(\varrho)-S)} N_{S}[M, \alpha ; \pi]
$$

The next lemma will be used to show that $\varphi_{g}^{\prime}\left(H_{g}\right)=0$.

Lemma 1. Let $M \in \|_{R(Q) / n R(Q)}$, where $\varrho \in X(\pi)$ has order n. There is a chain of submodules

$$
M=M_{0} \supset M_{1} \supset \cdots \supset M_{t}=0
$$

such that, for each i, M_{i} is stable under every $R(\varrho)$-endomorphism of M, and, for some $p \in P(\varrho), p\left(M_{i} / M_{i+1}\right)=0$ and ϱ_{p} acts trivially on M_{i} / M_{i+1}.

Except for the $\operatorname{End}_{R(\varrho)}(M)$-invariance of each M_{i}, this is Lemma 2.2 of Lenstra [2], and the M_{i} constructed by Lenstra are clearly End ${ }_{R(a)}(M)$ invariant.

Corollary. The subgroup H_{g} of $G_{i}(R(\varrho))$ is generated by elements $[M, \alpha ;(\varrho)]$ such that, for some prime $p \in P(\varrho), p M=0$ and ϱ_{p} acts trivially on M.

Now let (M, α) and p be as in the Corollary. Then

$$
\varphi_{\varrho}^{\prime}[M, \alpha ;(\varrho)]=\sum_{p \in S \in P(Q)}(-1)^{\#(P(Q)-S)}\left(N_{S}[M, \alpha ; \pi]-N_{S-\{p\}}[M, \alpha ; \pi]\right)=0 .
$$

Thus $\varphi_{\varrho}^{\prime}$ induces a homomorphism

Let

$$
\begin{aligned}
& \varphi_{\varrho}: G_{1}(R(\varrho)) / H_{\varrho} \rightarrow G_{1}(R \pi) \\
& \varphi_{\varrho}[M, \alpha ;\langle\varrho\rangle]=\sum_{s \subset P(\varrho)}(-1)^{\#(P(\varrho)-S)} N_{S}[M, \alpha ; \pi]
\end{aligned}
$$

$$
\varphi: \bigoplus_{Q \in X(\pi)} G_{1}(R \pi) / H_{Q} \rightarrow G_{1}(R \pi)
$$

be the homomorphism with components $\left(\varphi_{\varrho}\right)_{\varrho \in X(\pi)}$.
Theorem. φ is an isomorphism.
3. The inverse $\Psi: G_{1}(R \pi) \rightarrow \oplus_{\varrho} G_{1}(R(\varrho)) / H_{\varrho}$

Let $\varrho \in X(\pi)$ and let S be a set of primes. The functor $N_{S}: \mathscr{\mu}_{R \pi} \rightarrow \mathscr{U}_{R \pi}$ carries the subcategory $\mathscr{H}_{R(\rho)}$ to $\mathscr{M}_{R\left(Q_{S}\right)}$, and so defines homomorphism $N_{S}: G_{1}(R(\varrho)) \rightarrow$ $G_{1}\left(R\left(\varrho_{S}\right)\right)$ sending $[M, \alpha ;(\varrho)]$ to $\left[N_{S} M, \alpha ;\left(\varrho_{S}\right)\right]$. Thus we can define
by

$$
\Psi_{\varrho}: G_{1}(R(\varrho)) \rightarrow \bigoplus_{e^{\prime}} G_{1}\left(R\left(\varrho^{\prime}\right)\right) / H_{\varrho}
$$

$$
\begin{equation*}
\Psi_{\varrho}[M, \alpha ;(\varrho)]=\sum_{S \subset P(\varrho)}\left[N_{S} M, \alpha ;\left\langle\varrho_{S}\right\rangle\right] . \tag{3.1}
\end{equation*}
$$

Lemma 2. Suppose $\varrho_{1}, \varrho_{2} \in X(\pi), M \in \mathscr{H}_{R\left(\varrho_{1}\right)} \cap \mathscr{M}_{R\left(\varrho_{2}\right)}$, and $\alpha \in \mathrm{Aut}_{R \pi}(M)$. Then

$$
\Psi_{\varrho_{1}}\left[M, \alpha ;\left(\varrho_{1}\right)\right]=\Psi_{\varrho_{2}}\left[M, \alpha ;\left(\varrho_{2}\right)\right] .
$$

Lenstra's proof of his analogous Lemma 4.1 applies without any change here.

Lemma 3. Let $M \in \mathscr{U}_{R \pi}$. There is a chain of submodules

$$
\begin{equation*}
M=M_{0} \supset M_{1} \supset \cdots \supset M_{t}=0 \tag{3.2}
\end{equation*}
$$

such that, for each i, M_{i} is stable under $\operatorname{End}_{R \pi}(M)$, and $M_{i} / M_{i+1} \in \mathscr{M}_{R(e)}$ for some $\varrho \in X(\pi)$.

Except for the assertion about $\operatorname{End}_{R(\pi)}(M)$-invariance, this is just Lemma 2.5 of Lenstra [2]. The M_{i} constructed by Lenstra are easily seen to be $\operatorname{End}_{R_{\pi}}(M)$ invariant.

Let $M \in \mathscr{M}_{R \pi}$ and $\alpha \in \operatorname{Aut}_{R \pi}(M)$. With the notation of Lemma 3, let $\alpha_{i} \in$ Aut $_{R \pi}\left(M_{i} / M_{i+1}\right)$ be the automorphism induced by α, and choose $\varrho_{i} \in X(\pi)$ so that $M_{i} / M_{i+1} \in \mathscr{M}_{R\left(Q_{i}\right)}$. Put

$$
\begin{equation*}
\Psi[M, \alpha ; \pi]=\sum_{i=0}^{t-1} \Psi_{\varrho_{t}}\left[M_{i} / M_{i+1}, \alpha_{i} ;\left\langle\varrho_{i}\right\rangle\right] \tag{3.3}
\end{equation*}
$$

By Lemma 2, this is independent of the choice of the ϱ_{i} 's. To see that it does not depend on the filtration (2) of M, note first that Ψ is clearly unaltered if we replace (3.2) by a refinement. In general any two filtrations of M as in Lemma 3 have refinements which are equivalent in the sense of the Schrier theorem [3, Chapter IV, §4]; Schrier equivalent filtrations of M clearly give the same value for $\Psi[M, \alpha: \pi]$ in (3.1). Finally it is easily seen (as in Lenstra [2, p. 181]) that Ψ respects the defining relations of $G_{1}(R \pi)$. Thus (3) defines a homomorphism

$$
\Psi: G_{1}(R \pi) \rightarrow \bigoplus_{\varrho \in X(\pi)} G_{1}(R(\varrho)) / H_{Q}
$$

To check that $\varphi \circ \Psi[M, \alpha ; \pi]=[M, \alpha ; \pi]$ it suffices clearly to consider the case when $M \in \mathscr{M}_{R(\varrho)}$ for some $\varrho \in X(\pi)$. Then we have

$$
\begin{aligned}
\varphi \circ \Psi[M, \alpha ; \pi] & =\varphi\left(\sum_{S \subset P_{(Q)}}\left[N_{S} M, \alpha ;\left\langle\varrho_{S}\right\rangle\right]\right) \\
& =\sum_{S \subset P(Q)} \sum_{T \subset S}(-1)^{\#(S-T)}\left[N_{T} N_{S} M, \alpha ; \pi\right] \\
& =\sum_{\tau \subset P(Q)}\left[N_{T} M, \alpha ; \pi\right]\left(\sum_{\tau \in S \subset P(Q)}(-1)^{\#(S-T)}\right) \\
& =\left[N_{P(\varrho)} M, \alpha ; \pi\right]=[M, \alpha ; \pi] .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\Psi \circ \varphi[M, \alpha ;\langle\varrho\rangle] & =\Psi\left(\sum_{S \subset P(Q)}(-1)^{\#(P(Q)-S)}\left[N_{S} M, \alpha ; \pi\right]\right) \\
& =\sum_{S \subset P(Q)}(-1)^{\#(P(Q)-S)} \sum_{T \in S}\left[N_{T} N_{S} M, \alpha ;\left\langle\left(\varrho_{S}\right)_{T}\right\rangle\right] \\
& =\sum_{T \subset P(Q)}\left[N_{T} M, \alpha ;\left\langle\varrho_{T}\right\rangle\right]\left(\sum_{T \subset S \subset P(Q)}(-1)^{\#(P(Q)-S)}\right) \\
& =\left[N_{P(Q)} M, \alpha ;\left\langle\varrho_{P(\Omega)}\right\rangle\right]=[M, \alpha ;\langle\varrho\rangle] .
\end{aligned}
$$

This concludes the proof that φ is an isomorphism. One can check, just as in Lenstra [2, Section 5] that φ is functorial with respect to π and R in the same way that Lenstra's isomorphism is for G_{0}.

References

[1] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
[2] H. Lenstra, Grothendieck groups of abelian group rings, J. Pure Appl. Algebra 20 (1981) 173-193.
[3] S. Lang, Algebra (Addison-Wesley, Reading, MA, 1971).

